Mindray Z60 Vet

Mindray Z60 Vet
Mindray Z60 Vet

  • 15"
  • Средний Средний
  • Новинка
  • Mindray
  • Страна производитель: Китай
  • Гарантия: 12 мес.
  • Бесплатные монтаж и обучение
  • Бесплатная доставка
  • Сроки поставки: 1 мес.

Mindray Z60 Vet - это портативный ветеринарный аппарат среднего класса. Обладает экраном 15 дюймов. Оснащен жестким диском на 500 Гб, кардио допплером.

Подходит для:
• Абдоминальные исследования
• Кардиологии
• Акушерства
• Малых органов
• Общих исследований
• Репродуктивной системы
  • Цена товара:353 000р.

    *Указана ориентировочная цена
Z60 Vet - это мощная и универсальная цветная допплеровская система, которая предоставляет вам лучшее решение для ультразвуковой визуализации в ветеринарии с превосходной производительностью. Благодаря комплексным конфигурациям, специализированному ветеринарному рабочему процессу и интегрированному дизайну вы можете быть уверены в превосходном качестве ультразвука как у крупных животных, так и у домашних питомцев. Оснащенная профессиональными инновационными технологиями, эта умная портативная система превращает Z60 Vet в идеальную ветеринарную ультразвуковую систему с превосходным качеством изображения и различными расширенными функциями.

Комплексное применение ультразвука в ветеринарии Mindray Z60 Vet
Режимы ветеринарного сканирования: B, Цветной, PW, CW, Power, M, Free Xros M.
Разновидность ветеринарных датчиков: Микровыпуклые, линейные, выпуклые, с фазированной решеткой, Эндокавитационные.
Применение в ветеринарии: Репродуктивные органы, брюшная полость, сердце, сухожилия, мелкие части и многое другое.
Пакеты ветеринарных обследований: Измерение, комментарий, отчет и метка на теле, предназначенные для собак, кошек, лошадей, крупного рогатого скота, овец и многого другого.

Производительность Mindray Z60 Vet
PSH (Phase Shift Harmonic Imaging): Очищенное гармоническое изображение для улучшения контрастности обеспечивает более четкие изображения с отличным разрешением и меньшим уровнем шума.
iClear (изображение с подавлением спеклов): Улучшенное качество изображения на основе автоматического определения структуры. Более острые и непрерывные края. Гладкие однородные ткани. Очиститель "без эхо-зон’.
iBeam: Позволяет использовать несколько ракурсов сканирования для формирования единого изображения, что обеспечивает повышенное контрастное разрешение и улучшенную визуализацию.
iScape: Получите полное и расширенное представление об анатомической структуре с помощью панорамной визуализации в сочетании с индикацией скорости и возможностью сканирования вперед / назад, что делает сканирование намного проще, плавнее и управляемее.
ExFOV: Получите более подробную диагностическую информацию благодаря расширенному обзору анатомической структуры на всех выпуклых и линейных зондах.
B-Steer: Ваш инструмент для более глубокой биопсии: позволяет регулировать линию сканирования, чтобы получить лучшую видимость иглы, нервов и мелких сосудов.
Свободный Xros M: Получите точное анатомическое наблюдение, свободно размещая линии образца под любым углом. Получайте более качественные изображения за счет одновременного отображения до 3 строк выборки.
Цвет M: Режим Color Flow M и режим Color Tissue M предоставляют вам более подробную информацию о ветеринарной диагностике.
TDI: Тканевая допплеровская визуализация позволяет количественно оценить движение и функцию миокарда животных, обеспечивая полные режимы TDI для более быстрой и прямой диагностики.

Mindray Z60 Vet Workflow
IStorage: Прямая передача ветеринарных изображений и отчетов на ПК по сетевому кабелю.
iTouch: Получите мгновенную автоматическую оптимизацию изображения в режимах B, Color и PW нажатием одной клавиши.
iZoom: Получите мгновенный полноэкранный режим одним нажатием клавиши.
Описание: Уникальная система управления информацией о пациентах Mindray позволяет эффективно интегрировать, просматривать, архивировать и извлекать данные о пациентах.
DICOM: Комплексное решение DICOM.


Эргономика Mindray Z60 Vet
монитор с регулируемым углом наклона 60 градусов
Интегрированная конструкция с внутренним адаптером питания переменного тока
непрерывное сканирование продолжительностью 1,5 часа с помощью перезаряжаемой батареи
15-дюймовый монитор высокой четкости с полноэкранным дизайном
Водонепроницаемая защитная крышка, предназначенная для ветеринарной клавиатуры
Панель управления с подсветкой, предназначенная для ветеринарной диагностики в клиниках
Может быть упакован в удобную сумку для ручной переноски для удобства транспортировки

Технические характеристики Mindray Z60 Vet
Размер экрана: 15 дюймов
Разрешение экрана: 1024 x 768
Размер жесткого диска: 1 ТБ
Время загрузки: ~38 секунд
Порты датчика: 2
Порты USB: 4 x USB типа A
Сеть: Ethernet
Порты дисплея: 1 x видеовыход, 1 x S-Video ВЫХОД, 1 x VGA ВЫХОД

Режимы сканирования Mindray Z60 Vet
Импульсно-волновой допплер (включает высокую частоту повторения импульсов)
B/M/Цвет M/Цвет/Мощность/Доплеровский датчик направленной мощности
Гармоническая визуализация тканей и гармоническая визуализация с фазовым сдвигом
Изображение трапеции/ExFOV
Наличие триплексного режима
+
Направленность
Общие
Подкатегория
Портативные
Размер экрана в дюймах
15
Класс аппарата
Средний
Количество разъемов для датчиков
2
Наличие цветного допплера
+
Наличие дополнительной сенсорной панели
+
Объем памяти
500
Многолучевое сканирование
iBeam
Увеличение изображений
iZoom
Наличие эластографии компрессионной
+
Наличие дуплексного режима
+
Панорамное сканирование
iScape View
Поддержка постоянно-волнового доплера (CW)
+
Автоматический расчет толщины комплекса интима-медиа (IMT)
+
Наличие автоматического расчета воротникового пространства
Smart NT
Опция улучшения визуализации иглы для линейных датчиков
iNeedle
Поддержка анатомического М-режима
FreeXros
Поддержка импульсно-волнового доплера (PW)
+
Поддержка исследований с контрастными веществами
UWN+
Поддержка огибающего анатомического М-режима
FreeXros CM
Поддержка технологии Fusion
FreeXros CM
Поддержка тканевого доплера (TDI)
+
Поддержка цветного доплера (CD)
+
Программа измерения биометрии плода в акушерстве
Smart OB
Трапецевидный режим (Виртуальный конвекс)
+
Трехмерная реконструкция методом "свободной руки"
Smart 3D
Функции подавления шумов / зернистости и оптимизации изображений
iClear / iTouch
Поддержка карандашных датчиков
+
Поддержка монокристаллических датчиков
+
Поддержка педиатрических кардио датчиков
+
Страна производства
Китай
DICOM
+
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Тканевый допплер TDI. Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
TDI QA. Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Цветной допплер. Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Natural Touch Elastography. Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Постоянно-волновой допплер CW. Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Объемное сканирование в реальном времени. Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Трапецеивидный режим. Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
StressEcho. СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Блок ЭКГ. В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Smart 3D. Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
iScape. Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
iNeedle™. Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Автоматический расчет толщины комплекса интима-медиа. Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Free Xros M. Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
Free Xros CM. Огибающий анатомический М-режим (требуется установленная опция TDI)
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
iScanhelper. iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
iBeam™. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
iZoom™. Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации.
array(19) { [850]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [853]=> array(3) { ["link"]=> string(10) "tdi_qa.jpg" ["subtitle"]=> string(179) "Программа количественного анализа в режиме тканевого допплера (требуется установленная опция TDI)" ["title"]=> string(6) "TDI QA" } [835]=> array(3) { ["link"]=> string(7) "cdk.jpg" ["subtitle"]=> string(489) "Позволяет выделять цветом характер кровотока в ROI (области интереса) Обычно применяется в сердечно - сосудистых исследованиях. Кровяной поток, идущий от датчика, отображается синим цветом, к датчику – красным. Сине-зелено-желтым цветом выделяется турбулентный поток." ["title"]=> string(29) "Цветной допплер" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(195) "Опция оценки эластичности ткани (эластография), с программой анализа (поддерживается на датчиках L12-4s, L14-6Ns)" ["title"]=> string(26) "Natural Touch Elastography" } [841]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [844]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [847]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [856]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [859]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [866]=> array(3) { ["link"]=> string(12) "Smart_3D.jpg" ["subtitle"]=> string(390) "Трехмерная реконструкция методом "свободной руки". Ее принцип основан на том, что врач двигает обычным 2D датчиком вдоль зоны интереса, а ультразвуковой аппарат на основе полученных данных формирует 3D изображение." ["title"]=> string(8) "Smart 3D" } [869]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(265) "Модуль формирования панорамного изображения, который увеличивает зону видимости и позволяет увидеть структуру полностью на одном изображении." ["title"]=> string(6) "iScape" } [872]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(168) "Улучшение визуализации иглы при проведении пункций (поддерживается датчиками: L14-6Ns, L14-6s, 7L4s)" ["title"]=> string(10) "iNeedle™" } [941]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [877]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(419) "Анатомический М-режим - это возможность вращения курсора в М-режиме под произвольным углом (при фиксированном положении датчика) и, соответственно, получения графика движения структур сердца в различных произвольных плоскостях" ["title"]=> string(11) "Free Xros M" } [880]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(122) "Огибающий анатомический М-режим (требуется установленная опция TDI)" ["title"]=> string(12) "Free Xros CM" } [883]=> array(3) { ["link"]=> string(15) "iscanhelper.jpg" ["subtitle"]=> string(715) "iScanHelper – это встроенный в прибор атлас ультразвуковых исследований, который позволяет просматривать:
- карту положений ультразвукового датчика при текущем исследовании;
- анатомические иллюстрации к исследованиям;
- сопоставимые текущему исследованию изображения;
- описания отображаемых на эхограмме структур;
- советы по проведению текущего ультразвукового исследования." ["title"]=> string(11) "iScanhelper" } [886]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(847) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(8) "iBeam™" } [889]=> array(3) { ["link"]=> string(9) "izoom.jpg" ["subtitle"]=> string(193) "Автоматическое увеличение изображения на размер экрана одной кнопкой без потери качества и детализации." ["title"]=> string(8) "iZoom™" } [892]=> array(3) { ["link"]=> string(8) "ceus.jpg" ["subtitle"]=> string(236) "Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)" ["title"]=> string(7) "UWN+ QA" } }
UWN+ QA. Пакет для количественного анализа при проведении обследований с применением контрастных веществ (необходима опция UWN+ Contrast Imaging)
Наша компания также осуществляет ремонт и сервисное обслуживание оборудования Mindray Z60 Vet.
- Для заказа свяжитесь с нашими специалистами по номеру 8-800-511-55-08 или оставьте заявку на info@sonography.ru