Siui Apogee 5800

Siui Apogee 5800
Siui Apogee 5800
Siui Apogee 5800
Siui Apogee 5800
Siui Apogee 5800
Siui Apogee 5800
Siui Apogee 5800 Siui Apogee 5800 Siui Apogee 5800 Siui Apogee 5800 Siui Apogee 5800 Siui Apogee 5800

  • 23"
  • Экспертный Экспертный
  • Siui
  • В наличии
  • Страна производитель: Китай
  • Гарантия: 12 мес.
  • Бесплатные монтаж и обучение
  • Бесплатная доставка

Siui 5800 - это универсальный узи аппарат экспертного класса для общих исследований. Оснащен экраном 23 дюйма, сенсорным экраном 10,4 дюйма, кардио допплером, блоком ЭКГ, блоком эластографии, блоком 3D, 4D.
Подходит для:
• Общих
• Абдоминальных исследований
• Гинекологии
• Акушерства
• Урологии
• Кардиологии
• Малых органов
• Сосудов
• Педиатрии
  • Цена товара:2 405 000р.

    *Указана ориентировочная цена
Ультразвуковая система Siui Apogee 5800 относится к стационарным аппаратам экспертного класса. Данная УЗИ-система позволяет проводить диагностику на высоком профессиональном уровне, избегая при этом шумов, артефактов и помех при получении изображений.

Широкий спектр режимов сканирования, удобная и интуитивно простая система управления, эргономичный большой монитор и командный экран, множество специальных технологий, направленных на повышение качества обследований, - всё это делает УЗИ-систему Siui Apogee 5800 востребованной и актуальной для разных областей применения.

Технические характеристики:

Монитор: 19 дюймов, цветной, ЖК монитор с высоким разрешением
Командный экран (дополнительный): 10.4 дюйма, сенсорный
Технология макро-точности MFI: оптимизирует пространственное разрешение
Общие применения: Contrast Imaging, Эластография, Panoscope (панорамное сканирование).
Режим обеспечения высокого разрешения и чувствительности капилляров (VS Flow)
Фокальная трассировка Foco tracing
Модули: ЭКГ-модуль, SonoAir (WiFi-модуль для iPhone/iPpad).
4D (стандартное программное обеспечение) и 4D Pro (n-Slice, Any-Cut, Q-cut): Для акушерства и гинекологии.
Предустановленные параметры, аннотации, маркеры, программы измерений: для абдоминальных исследований, акушерства, гинекологии, кардиологии, ангиологии, исследований малых органов, урологии, педиатрии, неотложной медицины.
Многолучевое сложносоставное сканирование (Xbeam)
DICOM 3.0
Трехмерная реконструкция методом "свободной руки" (Free Hand 3D)
Трапециевидное изображение
Автоматический расчет толщины комплекса интима-медиа с программой анализа (Auto IMT)
Тканевая гармоника (THI)
CW (постоянно-волновой допплер),
Цветной М-режим,
Анатомический М-режим (до 3-х срезов),
TDI (тканевой доплер)
Разъемы для подключения датчиков: 6
Жесткий диск: 500 Гб с программой ведения базы данных пациента.
Адаптивный режим шумоподавления (Nanoview): есть
DVD-RW и 4 порта: для USB-устройств.
Режим отображения кровотока с высоким временным и пространственным разрешением (Microflow)
Автоматическая оптимизация изображения (Auto-fit): есть
Подогреватель геля

Принадлежности:
Подогреватель геля JRQ-B001
Биопсийная насадка для внутриполостного датчика (с руководством)
Биопсийная насадка для конвексного и линейного датчика (с руководством)
Водонепроницаемый ножной переключатель, двухклавишный (USB) JT-3

Датчики:

Специализированный конвексный датчик для объемного сканирования в реальном времени C5LF 2.0-5.0 МГц

Высокоплотный конвексный датчик C3LC радиус кривизны 60 мм, 2.0-5.0 МГц, 192 элемента

Эндоректальный датчик U5LC 50 мм,4.0-7.0 МГц

Специализированный конвексный датчик для объемного сканирования в реальном времени C5LF 4.0-7.0 МГц

Высокочастотный линейный датчик L10LC апертура 38 мм, 7.0-14.0 МГц

Специализированный микроконвексный внутриполостной датчик для объемного сканирования в реальном времени V6LC 4.0-9.0 МГц

Микроконвексный датчик C6LC радиус кривизны 17.5 мм, 4.5-7.5 МГц

Низкочастотный линейный датчик L5LC апертура 50 мм, 4.0-7.0 МГц

Высокоплотный линейный датчик L8LC апертура 50 мм, 5.0-12.0 МГц, 192 элемента

Высокоплотный линейный датчик L8LC апертура 38 мм, 5.0-12.0 МГц, 192 элемента

Эндоректальный биплановый датчик ECBP 5.0-12.0 МГц

Линейный датчик L8LC апертура 50 мм, 5.0-12.0 МГц

Внутриполостной датчик V6LC радиус кривизны 11 мм, 4.0-9.0 МГц

Линейный датчик L8LC апертура 38 мм, 5.0-12.0 МГц

Высокочастотный линейный датчик L10LC апертура 25 мм, 7.0-14.0 МГц

Высокочастотный секторный фазированный датчик P5FC 10 мм,4.0-7.0 МГц

Низкочастотный секторный фазированный датчик P3FC 20.5 мм, 1.7-4.0 МГц

Конвексный датчик C3LC радиус кривизны 60 мм, 2.0-5.0 МГц

Интраоперационный линейный датчик L10LC апертура 25 мм, 7.0-14.0 МГц
Наличие триплексного режима
+
Направленность
Общие
Подкатегория
Стационарные
Размер экрана в дюймах
23
Класс аппарата
Экспертный
Количество разъемов для датчиков
4
Наличие цветного допплера
+
Наличие дополнительной сенсорной панели
+
Объем памяти
500
Многолучевое сканирование
Xbeam
Наличие блока 3D/4D
+
Увеличение изображений
+
Наличие эластографии компрессионной
+
Наличие дуплексного режима
+
Панорамное сканирование
+
Поддержка постоянно-волнового доплера (CW)
+
Автоматический расчет толщины комплекса интима-медиа (IMT)
+
Поддержка анатомического М-режима
+
Поддержка блока ЭКГ
+
Поддержка импульсно-волнового доплера (PW)
+
Поддержка тканевого доплера (TDI)
+
Поддержка цветного доплера (CD)
+
Трапецевидный режим (Виртуальный конвекс)
+
Трехмерная реконструкция методом "свободной руки"
Freehand 3D
Функции подавления шумов / зернистости и оптимизации изображений
Auto-fit / Nanoview
Поддержка биплановых датчиков
+
Поддержка высокоплотных датчиков
+
Поддержка карандашных датчиков
+
Поддержка кардио датчиков
+
Поддержка объемных датчиков
+
Поддержка педиатрических кардио датчиков
+
Поддержка чреспищеводных датчиков
+
Страна производства
Китай
DICOM
+
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Объемное сканирование в реальном времени. Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Блок ЭКГ. В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Компрессионная эластография. Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Трапецеивидный режим. Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Тканевый допплер TDI. Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Постоянно-волновой допплер CW. Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Импульсно-волновой допплер PW. Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Анатомический М-режим. Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
nSlice. С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Q-Cut. Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Opti-4D. Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Автотрассировка по Симпсону. Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(7) "ecg.jpg" ["subtitle"]=> string(764) "В современном мире ультразвуковые исследования являются самыми популярными методами исследования. Ультразвуковые сканеры можно совмещать с эндоскопами, использовать в исследованиях снимки срезов с КТ/МРТ. Поэтому неудивительно, что УЗИ также поддерживает подключение ЭКГ к системе. УЗ сканеры можно использовать вместо электрокардиографов, и при помощи электродов проводить исследования в электрокардиографии." ["title"]=> string(15) "Блок ЭКГ" } [835]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [886]=> array(3) { ["link"]=> string(11) "VS-Flow.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(10) "nSlice.jpg" ["subtitle"]=> string(530) "С помощью данной функции можно легко найти нужный срез путем вращения мультисрезов 4D объекта, полученных с разных углов. Высокая диагностическая точность достигается настройкой толщины и угла среза с целью более детального изучения формы, размера и окружающих структур области интереса." ["title"]=> string(6) "nSlice" } [892]=> array(3) { ["link"]=> string(9) "Q-Cut.jpg" ["subtitle"]=> string(243) "Удаление ненужных элементов изображения позволяет изучить область интереса более точно, значительно улучшая качество изображения." ["title"]=> string(5) "Q-Cut" } [895]=> array(3) { ["link"]=> string(11) "Opti-4D.jpg" ["subtitle"]=> string(172) "Инструменты быстрой 4D оптимизации позволяют оперативно получить качественное 4D изображение." ["title"]=> string(7) "Opti-4D" } [898]=> array(3) { ["link"]=> string(11) "Simpson.jpg" ["subtitle"]=> string(330) "Автоматическая трассировка эндокарда (с возможностью тонкой настройки), проводимая методом трех точек, служит для получения информации о работе сердца, значительно экономя время." ["title"]=> string(52) "Автотрассировка по Симпсону" } [901]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(45) "Панорамное сканирование" ["title"]=> string(9) "Panoscope" } }
Panoscope. Панорамное сканирование
Наша компания также осуществляет ремонт и сервисное обслуживание оборудования Siui Apogee 5800.
- Для заказа свяжитесь с нашими специалистами по номеру 8-800-511-55-08 или оставьте заявку на info@sonography.ru

Аппараты УЗИ Siui