Esaote MyLab 40

Esaote MyLab 40
Esaote MyLab 40
Esaote MyLab 40
Esaote MyLab 40 Esaote MyLab 40 Esaote MyLab 40

  • 19"
  • Средний Средний
  • Esaote
  • Страна производитель: Италия
  • Гарантия: 12 мес.
  • Бесплатные монтаж и обучение
  • Бесплатная доставка
  • Сроки поставки: 3 мес.

Esaote MyLab 40 - это унверсальный узи аппарат среднего класса для общих исследований. Обладает экраном 19 дюймов, блоком кардио, блоком ЭКГ, блоком 3D/4D.
Подходит для:
• Абдоминальных исследований
• Ортопедии
• Гинекологии
• Акушерства
• Маммологии
• Малых органов
• Кардиологии
• Педиатрии
• Сосудов
  • Цена товара:3 000 000р.

    *Указана ориентировочная цена
Система ультразвукового исследования(УЗИ) MyLab™40 с технологией eHDTechnology, которая направлена на достижение реального диагностического значения, представляет собой компактную консольную ультразвуковую систему, спроектированную таким образом, чтобы идеально подходить для отделений или поликлиник, проводящих ультразвуковые исследования как общего характера, так исследования сердечно-сосудистых заболеваний. Разработанная на платформе MyLab™ лицензированная модульная архитектура системы MyLab™40, которая уже успела получить одобрительные отзывы, может быть сконфигурирована таким образом, чтобы удовлетворять индивидуальным нуждам своих пользователей и соответствовать всем их требованиям. eHD Technology: новая эра в ультразвуковой диагностике:

Повышено диагностическое значение
Отображение показателей на мониторе
Низкое энергопотребление

Преимущества УЗИ сканера MyLab™40

Более эффективное медицинское обслуживание

eHD — это технология компании Esaote, призванная стать инновацией в УЗИ и повысить качество пользования системами для таких исследований. Она олицетворяет наше внимание, которое мы уделяем диагностическому значению, и оптимизирует все аспекты цепочки, по которой проходит сигнал, начиная с эха, порождаемого телом пациента, и заканчивая выводом параметров на системный монитор. Она максимально увеличивает эффективность ультразвукового сканирования, позволяя специалисту по ультразвуковой эхографии максимально сконцентрироваться на пациенте. Это качество, которое повышает вашу уверенность в результатах исследования.

Решения, которые удовлетворят нужды каждой поликлиники.


MyLab™40 является компактной консольной системой, сконструированной таким образом, чтобы стать идеальным решением для её междисциплинарного использования в рамках отделения или поликлиники, где проводятся ультразвуковые исследования. Широкий выбор дополнительных функций вместе с полнейшим ассортиментом зондов iQProbes делают систему MyLab™40 системой комплексного обслуживания без потери качества изображения или повышения сложности пользования. IQProbes «яблочный зонд»: Большой выбор широкополосных датчиков.

Компания Esaote предлагает широкий выбор зондов, от вариантов с фазированной антенной решёткой (секторных) до высокочастотных линейных и конвексных, которые отвечают нуждам каждой поликлиники и предпочтениям каждого пользователя. Датчик — самый первый элемент, который соприкасается с телом пациента. Он посылает ультразвуковой луч и получает обратно отражённое эхо; эта технология чрезвычайно важна для получения высоких показателей отношения сигнал/шум, а также чёткого сигнала для оптимизации информации, касающейся анализа пространственных, контрастных и временных показателей.

Управление и передача данных

MyLab™Desk: на рабочий стол MyLab™Desk устанавливается программное обеспечение, идентичное программному обсеспечению MyLab™ для управления системой УЗИс обычного персонального компьютера. С помощью этой системы управления изображениями вы можете передавать изображения с системы УЗИ на ПК для более удобного исследования или последующей обработки.


MyLab™40: Компактные консольные системы ультразвукового исследования.

Разработанная на платформе MyLab™ лицензированная модульная архитектура системы MyLab™40, которая уже успела получить одобрительные отзывы, может быть сконфигурирована таким образом, чтобы удовлетворять индивидуальным нуждам своих пользователей и соответствовать всех их требованиям. Широкий выбор дополнительных функций вместе с полнейшим ассортиментом зондов iQProbes делают систему MyLab™40 системой комплексного обслуживания без потери качества изображения или повышения сложности использования.

Обработка изображения: компания Esaote предлагает различные технологии для улучшения качества изображения. Технология TEI™ позволяет принимать гармонический сигнал в полном объёме без ухудшения звуковой информации. Технологии Mview и Xview повышают качество ультразвукового изображения, снижая количество артефактов, затенений и пятнышек на нём.

CnTI™ - Contrast Tuned Imaging (визуализация с регулируемой контрастностью): это революционная технология компании Esaote, которая, в сочетании с новейшим поколением контрастных веществ для УЗИ, показывает впечатляющие клинические результаты, благодаря способности точно определять микропузырьки. Очень низкое акустическое давление, применяемое в технологии, позволяет увеличить время жизни пузырьков, которого достаточно для чёткого определения артериальной и поздней фаз заболевания. Очень высокая чувствительность зондов и низкий уровень шума и артефактов позволяют поставить точный диагноз как при обследовании на повреждение органов, так и при стандартном обследовании. Также имеется приспособление для квантификации контраста.

X4D & 3D: объёмная технология компании Esaote полностью построена на использовании сенсорных панелей. Она проста в использовании, отлично оптимизирует процесс исследования и является технологическим прорывом в сфере УЗИ.

RFQIMT — инновационность и точность в УЗИ сосудов: измерения проводятся на высочайшем уровне научно-технических достижений по технологии передачи данных на радиочастотах. Они проводятся в режиме реального времени, отличаются точностью, а показатели качества измерений выводятся поверх ультразвукового изображения в B-режиме.

XStrain™: методика тщательного анализа Strain-Strain Rate (уровень износа ткани) для оценки функционирования миокарда.

XHF: High-Frequency capability (возможность проведения исследования на очень высоких частотах).
Базовая конфигурация УЗИ сканера MyLab 40

Монитор высокого разрешения 19 дюймов на свободно вращающемся кронштейне;
В-режим, М-режим, TEI (тканевая гармоника), PW/ HPRF (спектральный допплер/высокочастотный импульсный допплер), CFM (цветовой допплер), PD (энергетический допплер), СW (непрерывно-волновой допплер), дуплексный режим, триплексный режим;
Лицензия Cardio - программа расчетов для кардиологических исследований;
Лицензия Ob/Gyn - программа расчетов в акушерстве и гинекологии;
Лицензия General Imaging - программа расчетов для общих радиологических исследований;
Лицензия X-View - программа улучшения качества визуализации;
TP-View - "виртуальный конвекс" на линейных датчиках;
3 активных порта для подключения датчиков;
Жесткий диск объемом более 120 Гб;
Запись инфомации на CD/DVD, USB;
Вес порядка 100 кг.
Области исследования базовой конфигурации MyLab 40

Гинекология/акушерство
Общая визуализация (абдоминальные органы, поверхностные органы)
Педиатрия
Урология
Ревматология
Региональная анестезия/ малоинвазивные вмешательства
Доступные программные опции для MyLab 40

Наименование Описание
лицензия CMM анатомический М-режим
лицензия TVM цветной тканевой допплер
лицензия Stress Echo программный пакет для стресс-эхо исследований
лицензия QIMT програма для автоматического измерения комплекса интима-медиа
лицензия CnTi программа для исследований с контрастными веществами
лицензия VPan панораммное сканирование
лицензия 3D/4D программа получения 3D изображения в режиме реального времени и методом "свободной руки"
лицензия Fetal weight index программма измерения индекса массы плода
лиценция Urology программа расчетов для исследований в урологии
лицензия DICOM возможность передачи в сеть информации в формате DICOM
Доступные датчики для Esaote MyLab 40

НАИМЕНОВАНИЕ ФОТО ОБЛАСТИ ПРИМЕНЕНИЯ ОСОБЕННОСТИ

Конвексные
CA1421 абдоминальная область,гинекология/акушерство, урология, мышечно-скелетной системы, кровеносной системы, в том числе исследование артерий брюшной полости. Возможно использование биопсийной насадки
BC431 абдоминальная область, кардиология, детская кардиология, гинекология/акушерство, урология, исследование малых органов и молочных желез, мышечно-скелетной системы,кровеносной системы, в том числе исследование артерий брюшной полости. Волюметрический конвексный широкополосной датчик
E8-5 R10P гинекология/акушерство, урология. Возможно использование биопсийной насадки
C5-2 R13 абдоминальная область, кардиология, детская кардиология, гинекология/акушерство, урология, исследование малых органов, мышечно-скелетной системы, кровеносной системы (исследование артерий брюшной полости).
EC123 абдоминальная область, гинекология/акушерство, урология, исследование кровеносной системы. Микроконвексный внутриполостной датчик. Возможно использование биопсийной насадки с углом 4 градуса.
EC1123 абдоминальная область, гинекология/акушерство, урология, исследование кровеносной системы. Микроконвексный внутриполостной датчик. Возможно использование биопсийной насадки с углом 4 градуса.
Линейные
LA332 абдоминальная область, гинекология/акушерство, педиатрия, урология, исследование малых органов, щитовидной и молочной желез, мышечно-скелетной системы, кровеносной системы (за исключением артерий брюшной полости). Датчик улучшенного дизайна - ябловидной формы
LA523 абдоминальная область, гинекология/акушерство, неонатология, педиатрия, урология, исследование малых органов, щитовидной и молочной желез, мышечно-скелетной системы, кровеносной системы (за исключением артерий брюшной полости). Используется при малоинвазивных вмешательствах под контролем ультразвука Возможно использование биопсийной насадки (угол 45 градусов)
LA435 абдоминальная область, гинекология/акушерство, педиатрия, исследование малых органов, щитовидной и молочной желез, мышечно-скелетной системы, кровеносной системы (за исключением артерий брюшной полости). Используется для исследования суставов в ревматологии, а также проведения малоинвазивных вмешательств под контролем ультразвука. Возможно использование биопсийной насадки (угол 45 градусов)
IOE323 абдоминальная область, гинекология/акушерство, неонатология, педиатрия, урология, исследование малых органов, щитовидной и молочной желез, мышечно-скелетной системы, кровеносной системы (за исключением артерий брюшной полости). Интраоперационный широкополосной линейный датчик. Возможно использование биопсийной насадки (угол 45 градусов)
LP323 абдоминальная область, педиатрия, исследование малых органов. Лапароскопический широкополосной линейный датчик.
TRT33 гинекология и урология. Трансректальный биплановый широкополосной линейно - конвексный датчик. Возможно использование биопсийной насадки
Фазированные
PA121 (PA121E) абдоминальная область, кардиология, детская кардиология,неонатология, педиатрия, исследование сосудистой системы (брюшная аорта, сосуды головного мозга).
TEE022 кардиология. Трансэзофагиальный широкополосной фазированный датчик для взрослых
PA122 (PA122E) абдоминальная область, кардиология, детская кардиология,неонатология, педиатрия, исследование сосудистой системы (брюшная аорта, сосуды головного мозга).
PA023 (PA023Е) кардиология, детская кардиология,гинекология, неонатология, педиатрия, исследование сосудистой системы (брюшная аорта, сосуды головного мозга).
PA230 (PA230E) абдоминальная область, гинекология/акушерство, кардиология, детская кардиология,неонатология, педиатрия, исследование сосудистой системы (брюшная аорта, сосуды головного мозга).
Допплеровские
Pencil CW 2 кардиология, детская кардиология, исследование сердечно-сосудистой системы. Режим отображения – допплерограмма. Регистрация высокоскоростных потоков, в том числе в абдоминальных и почечных артериях.
Pencil CW 5 исследование сердечно-сосудистой системы. Режим отображения – допплерограмма. Регистрация высокоскоростных потоков, в том числе в абдоминальных и почечных артериях.
Pencil HF CW исследование сердечно-сосудистой системы. Режим отображения – допплерограмма. Регистрация высокоскоростных потоков, в том числе в абдоминальных и почечных артериях.
Диапазон измерения, мм рт.ст.
Средний
Размер экрана в дюймах
19
Класс аппарата
Средний
Направленность
Общие
Подкатегория
Стационарные
Количество разъемов для датчиков
3
Наличие цветного допплера
+
Объем памяти
250
Многолучевое сканирование
+
Наличие блока 3D/4D
+
Увеличение изображений
+
Наличие дуплексного режима
+
Панорамное сканирование
+
Поддержка постоянно-волнового доплера (CW)
+
Автоматический расчет толщины комплекса интима-медиа (IMT)
+
Опция улучшения визуализации иглы для линейных датчиков
+
Поддержка анатомического М-режима
+
Поддержка импульсно-волнового доплера (PW)
+
Поддержка огибающего анатомического М-режима
+
Поддержка технологии Fusion
+
Поддержка тканевого доплера (TDI)
+
Поддержка цветного доплера (CD)
+
Программа для автоматического определения объема мочевого пузыря
+
Программы оценки деформации миокарда
+
Трехмерная реконструкция методом "свободной руки"
+
Функции подавления шумов / зернистости и оптимизации изображений
+
Поддержка биплановых датчиков
+
Поддержка высокоплотных датчиков
+
Поддержка карандашных датчиков
+
Поддержка кардио датчиков
+
Поддержка монокристаллических датчиков
+
Поддержка педиатрических кардио датчиков
+
Наличие триплексного режима
+
Страна производства
Италия
DICOM
+
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Опция улучшения визуализации иглы. Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Анатомический М-режим. Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Эхокардиография. Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Трапецеивидный режим. Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Тканевый допплер TDI. Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Постоянно-волновой допплер CW. Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Импульсно-волновой допплер PW. Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Огибающий анатомический М-режим. Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
MultiBeam. Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Автоматическое определение объема мочевого пузыря. Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Автоматический расчет толщины комплекса интима-медиа. Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
XView. Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
X4D. Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Vpan. Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
TVM. Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
TEI. Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
StressEcho. СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
Strain. Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение.
array(19) { [850]=> array(3) { ["link"]=> string(10) "Needle.jpg" ["subtitle"]=> string(586) "Данная опция позволяет улучшить изображение при введении иглы в тело пациента. Незаменима при проведении биопсии. Автоматически выделяет интересующую область при инвазивном вмешательстве в зависимости от угла вводы иглы, подавляет шумы при процедуре и ярко выделяет саму иглу, что значительно облегчает работу врача." ["title"]=> string(63) "Опция улучшения визуализации иглы" } [853]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(740) "Анатомический М-режим или Виртуальный М-режим, или Модификация М-режима – это произвольное перемещение и вращение линии среза. При анатомическом М-режиме врач получается возможность вращения курсора под произвольным углом без перемещения датчика. При этом получается графика движения структур сердца в различных произвольных плоскостях. Позволяет делать до 3-х срезов одновременно в реальном времени" ["title"]=> string(40) "Анатомический М-режим" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [841]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [844]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [847]=> array(3) { ["link"]=> string(7) "pwd.jpg" ["subtitle"]=> string(593) "Количественная оценка кровотока в сосудах. Во время процедуры врач устанавливает точку контрольного объема. При этом образуется две оси. По горизонтали откладывается время потока, по вертикали его скорость. Потоки, двигающиеся к датчику, располагаются выше линии, от датчика – ниже. Скоростной предел данного доплреа 2,5 м/с" ["title"]=> string(53) "Импульсно-волновой допплер PW" } [856]=> array(3) { ["link"]=> string(10) "m-mode.jpg" ["subtitle"]=> string(305) "Улучшенная опция анатомического М-режима. Позволяет изменять форму огибающей линии. Основан на принципе количественной оценки синхронности и сократимости миокарда." ["title"]=> string(59) "Огибающий анатомический М-режим" } [859]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(898) "Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества. Это возможно из-за того, что при многолучевом сканировании ультразвуковые лучи пересекаются и захватывают все области ткани. Также данный метод широко распространен из-за того, что он позволяет ускорить процесс сканирования." ["title"]=> string(9) "MultiBeam" } [866]=> array(3) { ["link"]=> string(12) "mochevoi.jpg" ["subtitle"]=> string(735) "Существуют нормативы емкости мочевого пузыря. Если его емкость увеличивается или уменьшается, возникает риск патологий и заболеваний. Измерить объем мочевого пузыря можно при помощи ультразвуковой диагностики. Программа для автоматического определения объема мочевого пузыря позволяет произвести расчеты данного органа без вмешательства врача и определить его емкость с максимальной точностью." ["title"]=> string(94) "Автоматическое определение объема мочевого пузыря" } [869]=> array(3) { ["link"]=> string(7) "imt.jpg" ["subtitle"]=> string(328) "Автоматический расчет толщины комплекса интима-медиа позволяет упростить работу врача, который прежде должен был производить расчеты вручную, а также избежать врачебной ошибки." ["title"]=> string(99) "Автоматический расчет толщины комплекса интима-медиа" } [872]=> array(3) { ["link"]=> string(10) "filter.jpg" ["subtitle"]=> string(330) "Функция подавления шумов / зернистости и оптимизации изображений XView. Различный набор опций, применяемый для подавления шумов и зернистости во время ультразвукового сканирования." ["title"]=> string(5) "XView" } [941]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(1244) "Технология X4D – 3D/4D специализированный алгоритм от Esaote дает возможность превратить традиционное двухмерное изображение в наглядную трехмерную/четырехмерную анимацию. Современные инновации делают процесс 3D/4D сканирования проще и быстрее, превращая акушерское обследование в эмоциональный праздник для родителей. Кроме наглядности исследование несет и диагностическую ценность:
• TMI – томографический режим изображения, объемная реконструкция выбранного участка.
• TSI – режим послойного исследования области интереса
• TPI – изображение ткани в трех взаимно препендикулярных полскостях
• VRA – точная трехмерная реконструкция участка после послойной разметки" ["title"]=> string(3) "X4D" } [877]=> array(3) { ["link"]=> string(12) "panorama.jpg" ["subtitle"]=> string(626) "Панорамное сканирование. Реконструкция всей поверхности исследования, состоящая из отдельных последовательных кадров. Данный метод позволяет сканировать неподвижные анатомические структуры. Врач с одинаковой скоростью проводит ультразвуковым датчиком по всей зоне интереса (ROI) и получает целостную картинку всего исследуемого объекта." ["title"]=> string(4) "Vpan" } [880]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(718) "Технология TVM (Тканевой допплер) - применяя цветовое картирование тканей, основываясь на их мгновенной скорости технология даёт полную информацию для оценки систолической и диастолической функций миокарда. Эта технология, связанная с PW Доплером, позволяет пользователю получить доплеровские сигналы высокого качества, измерить скорость, среднюю величину и мгновенное локальное ускорение." ["title"]=> string(3) "TVM" } [883]=> array(3) { ["link"]=> string(23) "tkanevaya_garmonika.jpg" ["subtitle"]=> string(1070) "Режим второй тканевой гармоники, оптимизирует изображение путем усиления контрастного разрешения. Детализированная картинка теперь доступна даже в сложных для сканирования случаях («тучные пациенты» или пациенты с развитой мускулатурой) благодаря широкому диапазону датчиков и технологии TEI, которая основывается на более тщательной фильтрации отраженного эхо-сигнала. Простота использования обеспечена благодаря доступу нажатием одной кнопки, быстрому реагированию, и является настоящим технологическим преимуществом в повседневном использовании ультразвуковых сканеров." ["title"]=> string(3) "TEI" } [886]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(815) "СтрессЭхоКГ – ультразвуковое исследование сердца при искусственном увеличении частоты его сокращений. Вызывается такое увеличение частоты сердечных сокращений или с помощью физической нагрузки, или с применением лекарств. Нарастание частоты сокращений при ишемической болезни сердца приводит к появлению очагов миокарда с нарушенной сократимостью. Эти участки со сниженной сократимостью врач видит на мониторе ультразвукового аппарата." ["title"]=> string(10) "StressEcho" } [889]=> array(3) { ["link"]=> string(11) "miocard.jpg" ["subtitle"]=> string(639) "Позволяет производить количественный анализ сократительности миокарда. Данная функция важна в постановке диагноза ишемии сердца. При помощи нее врач может измерить Strain Ratio (коэффициент деформации), который показывает во сколько раз жесткая зона сжимается слабее по сравнению с эластичной. Для этого он выделяет две области и производит сравнение." ["title"]=> string(6) "Strain" } [892]=> array(3) { ["link"]=> string(8) "QIMT.jpg" ["subtitle"]=> string(514) "Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки." ["title"]=> string(3) "QAS" } }
QAS. Технология QAS - точный и современный радиочастотный способ оценки состояния артериальной стенки. Наряду с традиционными методами ультразвукового исследования QAS предоставляет специалисту несколько дополнительных параметров для подробной оценки жесткости артериальной стенки.
Наша компания также осуществляет ремонт и сервисное обслуживание оборудования Esaote MyLab 40.
- Для заказа свяжитесь с нашими специалистами по номеру 8-800-511-55-08 или оставьте заявку на info@sonography.ru

Аппараты УЗИ Esaote