Canon (Toshiba) Aplio 500

Canon (Toshiba) Aplio 500
Canon (Toshiba) Aplio 500
Canon (Toshiba) Aplio 500
Canon (Toshiba) Aplio 500 Canon (Toshiba) Aplio 500 Canon (Toshiba) Aplio 500

  • 19"
  • Премиальный Премиальный
  • Canon (Toshiba)
  • Страна производитель: Япония
  • Гарантия: 12 мес.
  • Бесплатные монтаж и обучение
  • Бесплатная доставка

Canon Aplio 500 - это универсальный узи аппарат экспертного класса для общих исследований. Японская сборка обеспечивает отличное качество и надежность оборудования.
Оснащен экраном 19 дюймов, кардио допплером, блоком ЭКГ, блоком стресс - эхо, блоком компрессионной эластографии, блоком эластографии сдвиговой волны, блоком 3D, 4D, поддержка матричных датчиков.
Подходит для:
• Общих
• Абдоминальных исследований
• Гинекологии
• Акушерства
• Урологии
• Кардиологии
• Малых органов
• Сосудов
• Ангиологии
• Неонатологии
• Педиатрии
  • Цена товара:5 850 000р.

    *Указана ориентировочная цена
Система Aplio 500, в основе которой лежит новейшая в отрасли платформа для приложений реального времени, предлагает широкую гамму эксклюзивных, клинически проверенных технологий для повышения достоверности диагностики.
Система Aplio 500 компании Canon Medical Systems является перспективной технологией, делающей ее «картинкой на загляденье» в любой медицинской клинике.
Краткая характеристика УЗИ аппарата Canon Aplio 500
- ЖК монитор 19 дюймов с возможностью регулировки положения в вертикальной и горизонтальной плоскостях
- сенсорная панель управления 10 дюймов
- коннекторы для подсоединения 3/4-х датчиков
- встроенный жесткий диск УЗИ аппарата – 160 Гб
- жесткий диск рабочей станции – 250 Гб
- кинопетля – 4090 кадров
- количество приемо-передающих каналов – свыше 70 тыс.
- кол-во физических передающих каналов – 190
- глубина сканирования – до 32 см
- габариты: 500 (Ш) х 1400-1700 (В) х 900 (Г)
- масса – 140 кг.
Технические характеристики:
1. Технологии УЗИ аппарата Aplio 500
- Fly Thru (технология виртуального перемещения внутри полостей, потоков, сосудов в процессе объемной реконструкции),
- Smart Fusion (совмещение изображений, полученных на КТ и МРТ, с изображением, получаемом в процессе диагностики на УЗИ аппарате Aplio 500)
- Precision Imaging (прецизионная визуализация в результате получения и обработки данных от смежных сигналов))
- ApliPure+ (повышение контрастности изображений)
- Advanced Dynamic Flow (улучшенный динамический поток в результате сочетания пространственного и частотного кодирования)
- High Density Beamforming (формирование ультразвукового пучка высокой плотности, что позволяет получать изображения с высоким разрешением)
- CEUS (контрастное усиление, поддерживаемое 24-мя датчиками, включая 3D/4D датчики)
- VRI (визуализация с распознаванием сосудов)
- Micro Flow Imaging (визуализация микрокровотока)
- TSO (оптимизация тканевого отображения)
- iStyle+ (оптимизация нажатием одной кнопки комплекса параметров в зависимости от параметров обследуемого пациента и вида исследования)
- Speckle Reduction (подавления шумов) и другие технологии и функции уже зарекомендовавшие себя в других моделях УЗИ аппаратов Тошиба.
2. Режимы и функции:
В-, М-, PW, CW, HPRFPW, Color, дуплексный и триплексный режимы, энергетический и тканевой доплер, панорамное и трапециевидное сканирование, эластография, технология IMT(автоматическое измерение комплекса интима-медиа), тканевая гармоника, виртуальная объёмная соноэндоскопия, стресс-эхо, анатомический М режим.
3. Датчики УЗИ аппарата Aplio 500
Аппарат имеет свыше 30 моделей датчиков, в том числе линейные, конвексные, секторные, внутриполостные, черезпищеводные, интраоперационные и карандашные
4. Опции
- CW допплер
- эластография, в том числе сдвиговой волны
- панорамная реконструкция
- функция треккинга и оценки смещения стенки миокарда
- ЭКГ модуль
- функция выявления микрокальцинатов в молочной железе
- пакет ПО для количественного анализа структуры печени - транспищеводная эхография
- контрастная эхография
- функция Fly Thru
- режим 4D
- функция 4D STIC – получение объёмного изображения сердца
- функция Multi View создания серии поперечных сечений для получения объемного изображения
- сканирование 4D с контрастным усилением.

Датчики:
ЛИНЕЙНЫЕ ДАТЧИКИ
PLT-I202S (7-18 МГц)
Применение: интраоперационные исследования (брюшная полость), малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все режимы кроме CWD, Dynamic Flow, CHI 2D и 4D
Функции: TDI, ApliPure, Smart 3D и эластография
PLT-I204BT (апертура: 38 мм, 7-18 МГц)
Применение: малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все режимы кроме CWD, CHI 2D и 4D
Функции: TDI, ApliPure, MicroPure, Precision Imaging, SMI (визуализация низкоскоростного кровотока), BEAM (функция визуализации биопсийной иглы), Smart 3D и эластография
PLT-I204BX (апертура: 38 мм, 7-18 МГц)
Применение: малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все режимы кроме CWD, CHI 2D и 4D
Функции: ApliPure, Precision Imaging, BEAM, Smart 3D, SMI
PLT-I204MV (7-18 МГц)
Применение: малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все кроме CWD, CHI 2D
Функции: ApliPure, Precision Imaging, STIC, 3D Color и STIC Color
PLT-704SBТ (апертура: 38 мм, 4,8-11 МГц)
Применение: малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все кроме 4D, CHI 2D, CWD
Функции: AlpiPure, Precision Imaging, BEAM, Smart 3D, Boost, SMI
PLT-604АТ (4-9,2 МГц)
Применение: малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все кроме 4D, CHI 2D, CWD
Функции: AlpiPure, Precision Imaging, BEAM, Smart 3D
PLT-704AТ (апертура: 38 мм, 5-11 МГц)
Применение: малые органы, мышечноно-скелетная система, периферические сосуды
Режимы: все кроме 4D, CHI 2D, CWD
Функции: AlpiPure, Precision Imaging, BEAM, Smart 3D
PLT-705BТ (4-11 МГц)
Применение: малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все кроме 4D, CHI 2D, CWD
Функции: AlpiPure, Precision Imaging, Boost, BEAM, Smart 3D
PLT-705BТF (интраоперационный, 5-11 МГц)
Применение: брюшная полость
Режимы: все кроме 4D, CHI 2D, CWD
Функции: AlpiPure, Precision Imaging, Smart 3D
PLT-805AТ (апертура: 58 mm, 6,2-12 МГц)
Применение: малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все кроме 4D, CHI 2D, CWD
Функции: AlpiPure, Precision Imaging, MicroPure, BEAM, Smart 3D, эластография
PLT-1005BТ (7-14 МГц, 58 мм)
Применение: малые органы, мышечно-скелетная система, периферические сосуды
Режимы: все кроме 4D, CHI 2D, CWD
Функции: AlpiPure, Precision Imaging, MicroPure, Fusion, Boost, SMI, BEAM, Smart Navigation, Smart 3D, Shear wave (эластография методом сдвиговой волны)
ЧРЕСПИЩЕВОДНЫЕ ДАТЧИКИ
PET-510MB (3,0-6,6 МГц, R9,2 mm)
Применение: транспищеводные исследования (кардиология)
Режимы: все кроме Dynamic Flow, Power, CHI 2D и 4D
Функции: TDI, 2D WMT
PET-508 МА (3,0-6,6 МГц, 14x19 mm)
Применение: транспищеводные исследования (кардиология)
Режимы: все кроме Dynamic Flow, Power, CHI 2D и 4D
Функции: TDI, 2D WMT
PET-512МС (2-8 МГц, R11 mm)
Применение: транспищеводные исследования (кардиология)
Режимы: все кроме Dynamic Flow, Power, CHI 2D и 4D
Функции: TDI, 2D WMT
PET-805LA (4-12 МГц)
Применение: лапароскопические исследования
Режимы: все кроме CWD, CHI 2D и 4D
Функции: Precision Imaging, ApliPure
КАРАНДАШНЫЕ ДАТЧИКИ
PC-20M (2 МГц)
Применение: кардиология взрослая и детская и периферические сосуды
Режимы: только CWD
PC-50M (5 МГц)
Применение: кардиология взрослая и детская и периферические сосуды
Режимы: только CWD
СЕКТОРНЫЕ ФАЗИРОВАННЫЕ ДАТЧИКИ
PST-25BT (1-5 МГц)
Применение: брюшная полость, педиатрия, неонатальная и взрослая цефалика, кардиология взрослая и детская
Режимы: все кроме 4D
Функции: TDI, 2D WMT и эластография
PST-30BT (2-5 МГц)
Применение: брюшная полость, педиатрия неонатальная и взрослая цефалика, кардиология взрослая и детская
Режимы: все кроме 4D
Функции: TDI, 2D WMT и эластография
PST-50BT (3-7 МГц)
Применение: брюшная полость, педиатрия, неонатальная и взрослая цефалика, кардиология взрослая и детская
Режимы: все кроме 4D
Функции: TDI, 2D WMT и эластография
PST-65AT (4-9 МГц)
Применение: брюшная полость, педиатрия, неонатальная и взрослая цефалика, кардиология взрослая и детская
Режимы: все кроме 4D
Функции: TDI, 2D WMT и эластография
КОНВЕКСНЫЕ ДАТЧИКИ
PVT-375BT (1,0-6,0 МГц)
Применение: брюшная полость, педиатрия, исследования плода
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, Fusion, SMI, Shear wave, BEAM и эластография
PVT-375SC (1-6 МГц)
Применение: брюшная полость, педиатрия, исследования плода
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, Fusion, SMI, Shear wave, BEAM и эластография
PVT-375MV (1,0-6,0 МГц)
Применение: брюшная полость, педиатрия, исследования плода
Режимы: все кроме CWD и CHI 2D
Функции: ApliPure, Precision Imaging, STIC, 3D Color, STIC Color
PVT-382BT (микроконвексный датчик 15х29 мм, 1-6 МГц)
Применение: брюшная полость, педиатрия, исследования плода
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, Fusion, Smart Navigation, Smart 3D
PVT-382MV (4D микроконвексный датчик, 1-6 МГц)
Применение: брюшная полость, педиатрия, исследования плода
Режимы: все кроме CWD, CHI 2D
Функции: ApliPure, Precision Imaging, 3D Color
PVT-661VT (внутриполостной датчик, 3,6-8,8 МГц)
Применение: трансректальные и трансвагинальные исследования
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, TDI и эластография
PVT-781VT (внутриполостной датчик)
Применение: трансректальные и трансвагинальные исследования
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, TDI, Fusion, SMI, Smart Navigation и эластография
PVT-781VTE (внутриполостной датчик)
Применение: трансректальные и трансвагинальные исследования
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, TDI, Fusion, SMI, Smart Navigation и эластография
PVT-674BT (микроконвексный датчик 15х49 мм, 3-10 МГц)
Применение: брюшная полость, педиатрия, исследования плода
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, Boost, SMI, Smart 3D
PVT-675MV (2-8 МГц)
Применение: брюшная полость, педиатрия, исследования плода
Режимы: все кроме CWD, CHI 2D
Функции: ApliPure, Precision Imaging, STIC, 3D Color, STIC Color
PVT-675MVL (2-8 МГц)
Применение: брюшная полость, педиатрия, исследования плода
Режимы: все кроме CWD, CHI 2D
Функции: ApliPure, Precision Imaging, STIC, 3D Color, STIC Color
PVT-681MV (внутриполостной датчик 4D, 4-11 МГц)
Применение: трансректальные и трансвагинальные исследования
Режимы: все кроме CWD, CHI 2D
Функции: ApliPure, Precision Imaging, TDI, 3D Color и эластография
PVT-681MVL (внутриполостной датчик 4D, 4-11 МГц)
Применение: трансректальные и трансвагинальные исследования
Режимы: все кроме CWD, CHI 2D
Функции: ApliPure, Precision Imaging, TDI, 3D Color, SMI и эластография
PVT-712BT (4-11 МГц)
Применение: брюшная полость, педиатрия, транскраниальные исследования новорожденных
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, Smart 3D
PVT-745BTF (4-11 МГц)
Применение: брюшная полость, интраоперационный (брюшная полость)
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, Smart 3D
PVT-745BTH (4-11 МГц)
Применение: брюшная полость, интраоперационный (брюшная полость)
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, рrecision Imaging, Smart 3D
PVT-745BTV (5,8-11 МГц)
Применение: брюшная полость, интраоперационный (брюшная полость)
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, Smart 3D
PVT-770RT (5-10 МГц)
Применение: трансректальные и трансвагинальные исследования
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, TDI, эластография
PVT-715RST
Применение: трансректальные исследования
Режимы: все кроме CWD, CHI 2D, 4D
Функции: ApliPure, Precision Imaging, Fusion, SMI, Smart Navigation
Наличие триплексного режима
+
Направленность
Общие
Подкатегория
Стационарные
Размер экрана в дюймах
19
Класс аппарата
Премиальный
Количество разъемов для датчиков
4
Наличие цветного допплера
+
Наличие дополнительной сенсорной панели
+
Объем памяти
320
Многолучевое сканирование
+
Наличие блока 3D/4D
+
Увеличение изображений
Zoom B
Наличие эластографии компрессионной
+
Наличие эластографии сдвиговой волны
+
Наличие дуплексного режима
+
Панорамное сканирование
Panoramic view
Поддержка постоянно-волнового доплера (CW)
+
Автоматический расчет толщины комплекса интима-медиа (IMT)
+
Поддержка анатомического М-режима
+
Поддержка блока ЭКГ
+
Поддержка импульсно-волнового доплера (PW)
+
Поддержка исследований с контрастными веществами
+
Поддержка объемной визуализации сердца плода (STIC)
+
Поддержка технологии Fusion
+
Поддержка тканевого доплера (TDI)
+
Поддержка цветного доплера (CD)
+
Программы оценки деформации миокарда
Strain
Трапецевидный режим (Виртуальный конвекс)
+
Функции подавления шумов / зернистости и оптимизации изображений
+
Поддержка биплановых датчиков
+
Поддержка высокоплотных датчиков
+
Поддержка интраоперационных датчиков
+
Поддержка карандашных датчиков
+
Поддержка кардио датчиков
+
Поддержка матричных датчиков
+
Поддержка объемных датчиков
+
Поддержка педиатрических кардио датчиков
+
Поддержка чреспищеводных датчиков
+
Страна производства
Япония
DICOM
+
Желчный пузырь
SMI с цветовой кодировкой демонстрирует информацию о потоке и оттенках серого с высоким временным и пространственным разрешением одновременно.
Сосуды
Сосуды почки
Advanced Dynamic Flow ™ добавляет превосходное пространственное разрешение к цветным доплеровским изображениям, чтобы выявлять мельчайшие сосудистые потоки и сложные структуры потока с беспрецедентной точностью и детализацией при полном сохранении качества изображения в B-режиме.
Яркость обеспечивает более мягкую, более естественную визуализацию кожи, в результате чего получаются изображения исключительного качества и детализации. Свободно перемещаемый источник света функции обеспечивает сильную визуальную обратную связь по глубине и деталям.
MultiView от Aplio предоставляет очень эффективный инструмент для оценки поражений и связанных с ними структур. Эта функция позволяет вам обрезать заданный объем в любом направлении, чтобы показать внеосевые изображения с высоким разрешением, которые могут еще больше повысить вашу диагностическую достоверность.
Fly Thru позволяет виртуально погрузиться в объем данных, чтобы исследовать полости, воздуховоды и сосуды изнутри. Fly Thru, сравнимый с виртуальной эндоскопией, добавляет ультразвуковую информацию о поперечном сечении к данным поверхности, что делает его экспертным инструментом для исследования поражений и врастания масс.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Постоянно-волновой допплер CW. Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Объемное сканирование в реальном времени. Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Эхокардиография. Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Эластография сдвиговой волны. Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Компрессионная эластография. Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Трапецеивидный режим. Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Тканевый допплер TDI. Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Объемная визуализация сердца плода. 4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
ADF. Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
DTHI. (Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Precision Imaging. Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Panoramic View. Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Поверхностная реконструкция. Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
SMI. SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }

Smart Sensor 3D.
Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах.
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Fly Thru. Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре
array(18) { [850]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [853]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(30) "natural-touch-elastography.jpg" ["subtitle"]=> string(469) "Эластография сдвиговой волны. Вид исследования основан на поперечном акустическом импульсе, который используется для создания сдвиговых волн. Измерив скорость распространения сдвиговой волны, специалист получает количественную оценку жесткости ткани." ["title"]=> string(54) "Эластография сдвиговой волны" } [841]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [844]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [847]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [856]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [886]=> array(3) { ["link"]=> string(12) "aplipure.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> string(825) "Улучшенный Динамический Поток (Advanced Dynamic Flow™ (ADF)) обеспечивает высочайшее пространственное разрешение в режиме цветового доплеровского картирования, позволяя с непревзойденной точностью и детализацией выявлять самые мелкие сосуды и зоны со сложным характером кровотока. Технология ADF позволяет получать точные изображения кровотока с учетом направления при высокой частоте кадров, в полной мере сохраняя качество изображений, присущее В-режиму." ["title"]=> string(3) "ADF" } [892]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [895]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [898]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [901]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [904]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } [907]=> array(3) { ["link"]=> string(15) "smartsensor.jpg" ["subtitle"]=> string(262) "Smart Sensor 3D с магнитным датчиком отвечает за объемную визуализацию и точные измерения. Проводит точную 3D реконструкцию, работает во всех режимах." ["title"]=> string(21) "
Smart Sensor 3D" } [910]=> array(3) { ["link"]=> string(11) "FlyThru.jpg" ["subtitle"]=> string(384) "Технология Fly Thru отличается от обычной четырехмерной визуализации, поскольку в ней используется перспективная проекция, в которой изображение отображается таким же образом, как при эндоскопической процедуре" ["title"]=> string(8) "Fly Thru" } [913]=> array(3) { ["link"]=> string(19) "Shadow-Glass​.jpg" ["subtitle"]=> string(339) "Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований." ["title"]=> string(15) "Shadow Glass​" } }
Shadow Glass​. Shadow Glass​ обеспечивает эффект полупрозрачного стекла, позволяет визуализировать различные слои тканей и расположение сосудов. Необходима для акушерско-гинекологических обследований.
Наша компания также осуществляет ремонт и сервисное обслуживание оборудования Canon (Toshiba) Aplio 500.
- Для заказа свяжитесь с нашими специалистами по номеру 8-800-511-55-08 или оставьте заявку на info@sonography.ru

УЗИ аппараты Canon (Toshiba)