Canon (Toshiba) Aplio 400

Canon (Toshiba) Aplio 400
Canon (Toshiba) Aplio 400
Canon (Toshiba) Aplio 400
Canon (Toshiba) Aplio 400 Canon (Toshiba) Aplio 400 Canon (Toshiba) Aplio 400

  • 19"
  • Экспертный Экспертный
  • Canon (Toshiba)
  • Страна производитель: Япония
  • Гарантия: 12 мес.
  • Бесплатные монтаж и обучение
  • Бесплатная доставка

Canon Aplio 400 - это универсальный узи аппарат экспертного класса для общих исследований. Японская сборка обеспечивает отличное качество и надежность оборудования.
Оснащен экраном 19 дюймов, кардио допплером, блоком ЭКГ, блоком стресс - эхо, блоком эластографии, блоком 3D, 4D, поддержка матричных датчиков.
Подходит для:
• Общих
• Абдоминальных исследований
• Гинекологии
• Акушерства
• Урологии
• Кардиологии
• Малых органов
• Сосудов
• Ангиологии
• Неонатологии
• Педиатрии
  • Цена товара:5 040 000р.

    *Указана ориентировочная цена
Диагностика на высоком уровне стала возможна благодаря использованию нового ультразвукового сканера Aplio 400 от Canon. Данная модель предназначена для исследований широкого профиля, она обладает улучшенными техническими характеристиками и удобна в эксплуатации.

Несмотря на то, что Aplio 400 относится к стационарным ультразвуковым системам, она очень компакта и не занимает много пространства в помещении. Многие профессионалы выбирают модель Aplio 400, потому что с ней процесс работы будет не только эффективным, но и более быстрым за счет удобной системы управления.

Технические характеристики системы Aplio 400
Жидкокристаллический цветной дисплей с диагональю 19 дюймов
Линейный матричный датчик
3/4 активных портов для датчиков
3D/4D
Aplipure Plus модуль многолучевого сканирования в реальном времени
Цифровой формирователь луча: технологии TwinView, ApliPure, CWD, PWD и TDI
3D Fly Thru Volume Imaging виртуальная объемная эндоэхография
QuickScan модуль оптимизации 2D изображения
Стресс эхо
Визуализация микрокровотока Micro Flow Imaging (MFI), исследования с контрастным усилением (CEUS), визуализация с распознанием сосудов (VRI)
Технологии MicroPure (определение микрокальцинат) и Realtime ASQ (оценка плотности тканевых структур)
Панорамное сканирование
Сканирование с обработкой ультразвуковых линий Precision Imaging, дифференцированная тканевая гармоника Differential THI
Трапециевидное сканирование
Специальная программируемая сенсорная панель управления (Touch screen)
Smart Fusion (появление на экране изображений УЗИ и КТ/МРТ)
Динамический поток Advenced Dinamic Flow (ADF)
TSO модуль тканевого усиления с высокой частотой кадров / Модуль специальной оптимизации тканевого отображения
Технология эластографии
М-режим
Ви PWрежимы в реальном времени
Гармоника фазовой инверсии (на всех типах датчиков)
Стресс эхокардиография
B-режим
PW – импульсно-волновой допплер
ЦДК цветовое допплеровское картирование (по скорости)
Режим HPRF
Тканевая (вторая) гармоника
Трапециевидное сканирование
СW – постоянно-волновой допплер
Многолучевое составное сканирование в реальном времени с использованием всех датчиков и режимов
Режим Триплекс
4D – режим
Контрастная эхография в режиме тканевой и органной перфузии
Транспищеводная эхография
Тканевой допплер
Эхокардиография в режиме пространственно-временной корелляции изображения в режимах серой шкалы и ЦДК(STIC)
PD – Цветовое допплеровское картирование (по энергии)
Технология автоматического оконтуривания допплеровского спектра в реальном времени
Режим пространственно-частотного кодирования в реальном времени (все датчики и режимы)
Общее описание ультразвуковой системы Aplio 400
Ультразвуковая система Aplio 400 универсальна, так может применяться для проведения диагностических исследований широкого профиля (начиная от исследования поверхностно расположенных органов, заканчивая сферой гинекологии и акушерства).
Производители оснастили модель Aplio 400 широким спектром режимов и функций (функция эластографии, режим цветового доплеровского картирования, режим тканевой гармоники и т.д.), которые позволяют специалисту наблюдать даже за самыми незначительными деталями. К тому же, специалист может отслеживать области со сложным характером кровотока.
Благодаря ультразвуковому сканеру Aplio 400 врач может больше не сомневаться в результатах диагностики: высокое качество и детализация изображения позволяет с точностью охарактеризовать состояние анатомических структур, обнаружить патологии и нарушения.
Инновационные технологии 3D и 4D значительно расширяют возможности специалиста, создавая объемные натуралистичные изображения.
Aplio 400 – это очень компактная и мобильная ультразвуковая система, которая подойдет даже для малогабаритных кабинетов.
Система удобна в эксплуатации: благодаря ее простым настройкам и легкому управлению рабочий процесс будет осуществляться значительно быстрее.
Виды обследований на системе Aplio 400
Педиатрия
Транскраниальные исследования
Исследование органов брюшной полости
Исследование поверхностных органов
Гинекология
Акушерство
Кардиология
Ангиология
Урология
Исследования костно-мышечной системы
Датчики
Линейные
Транспищеводные
Интраоперационные
Фазированные секторные
Конвексные и микроконвексные
Карандашные
Внутриполостные
Биопсийные
Наличие триплексного режима
+
Направленность
Общие
Подкатегория
Стационарные
Размер экрана в дюймах
19
Класс аппарата
Экспертный
Количество разъемов для датчиков
4
Наличие цветного допплера
+
Наличие дополнительной сенсорной панели
+
Объем памяти
320
Многолучевое сканирование
+
Наличие блока 3D/4D
+
Увеличение изображений
Zoom B
Наличие эластографии компрессионной
+
Наличие дуплексного режима
+
Панорамное сканирование
Panoramic view
Поддержка постоянно-волнового доплера (CW)
+
Автоматический расчет толщины комплекса интима-медиа (IMT)
+
Поддержка анатомического М-режима
+
Поддержка блока ЭКГ
+
Поддержка импульсно-волнового доплера (PW)
+
Поддержка исследований с контрастными веществами
+
Поддержка объемной визуализации сердца плода (STIC)
+
Поддержка технологии Fusion
+
Поддержка тканевого доплера (TDI)
+
Поддержка цветного доплера (CD)
+
Трапецевидный режим (Виртуальный конвекс)
+
Функции подавления шумов / зернистости и оптимизации изображений
+
Поддержка высокоплотных датчиков
+
Поддержка интраоперационных датчиков
+
Поддержка карандашных датчиков
+
Поддержка кардио датчиков
+
Поддержка матричных датчиков
+
Поддержка объемных датчиков
+
Поддержка педиатрических кардио датчиков
+
Поддержка чреспищеводных датчиков
+
Страна производства
Япония
DICOM
+
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Объемное сканирование в реальном времени. Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Объемная визуализация сердца плода. 4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Эхокардиография. Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Компрессионная эластография. Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Трапецеивидный режим. Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Тканевый допплер TDI. Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Постоянно-волновой допплер CW. Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Многолучевое сканирование. Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
DTHI. (Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Precision Imaging. Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Panoramic View. Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
Поверхностная реконструкция. Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей.
array(14) { [850]=> array(3) { ["link"]=> string(12) "ct-fetal.jpg" ["subtitle"]=> string(497) "Объемное сканирование в реальном времени – это возможность получения трехмерного изображения в реальных сечениях и срезах. Достигается посредством оперативной коррекции углов сканирования и уменьшения шумов 2D шкалы. Применяется в основном в акушерстве и гинекологии." ["title"]=> string(76) "Объемное сканирование в реальном времени" } [853]=> array(3) { ["link"]=> string(16) "serdce_ploda.jpg" ["subtitle"]=> string(550) "4D технология исследования сердца плода. Основывается на пространственно - временной корреляции изображения. Основным преимуществом данной опции является то, что она позволяет не только исследовать, но и извлекать и сохранять данные для последующего их просмотра как в динамике, так и в 2D и 3D режимах." ["title"]=> string(65) "Объемная визуализация сердца плода" } [835]=> array(3) { ["link"]=> string(10) "echokg.jpg" ["subtitle"]=> string(777) "Эхокардиография или ЭхоКГ - метод, используемый для изучения сердца. Направлен на его физические и морфологические изменения. Врач посылает через исследуемый орган или ткань ультразвуковой сигнал, который меняет амплитуду, период и частоту в зависимости от ткани. Затем он отражается от стенки органа или ткани, возвращается обратно и обрабатывается эхокардиографом. При этом врач получает полную картину сердца с 4 сторон" ["title"]=> string(30) "Эхокардиография" } [838]=> array(3) { ["link"]=> string(23) "Elastography tissue.jpg" ["subtitle"]=> string(1124) "Компрессионная эластография – метод качественной оценки упругих свойств ткани. Исследует жесткость тканей путем нажатия на них специальным УЗ-датчиком. Степень деформации ткани при механическом надавливании помогает определить плотность новообразования. По результатам диагностики формируется цветовая картограмма эластичности.
Этот вид применяется в отношении тканей, близко расположенных к коже (лимфоузлы и пакеты молочных желез). Исследование позволяет выявлять и дифференцировать на ранней стадии злокачественные и доброкачественные образования, различающиеся в несколько раз своей жесткостью." ["title"]=> string(53) "Компрессионная эластография" } [841]=> array(3) { ["link"]=> string(10) "trapec.jpg" ["subtitle"]=> string(655) "Применяется на линейных датчиках. Режим виртуального конвекса (трапецеивидный режим) позволяет увеличить зону сканирования за счет расположенной секторной фазированной решетки по бокам датчика. Таким образом, угол сканирования становится равным 15-20 градусам, а лучи отклоняются так, что зона изучения перестает быть линейной и становится трапецеивидной." ["title"]=> string(39) "Трапецеивидный режим" } [844]=> array(3) { ["link"]=> string(7) "tdi.jpg" ["subtitle"]=> string(532) "Позволяет оценить сократительную способоность миокарда. Обычно применяется совместно с импульсно-волновым допплером (PW). При помощи данного допплера появляется возможность диагностировать ишемию, системные поражения сердца, кардомиопатии и другие виды сердечно - сосудистых заболеваний" ["title"]=> string(35) "Тканевый допплер TDI" } [847]=> array(3) { ["link"]=> string(6) "cw.jpg" ["subtitle"]=> string(232) "Применяется в эхокардиографии. Позволяет произвести количественную оценку кровотока в сосудах с высокоскоростными потоками." ["title"]=> string(53) "Постоянно-волновой допплер CW" } [856]=> array(3) { ["link"]=> string(9) "ibeam.jpg" ["subtitle"]=> string(432) "Суммирование данных, полученных от ультразвуковых лучей под различными углами приема-передачи. Данный вид сканирования увеличивает четкость контуров и границ тканей, а также позволяет получить изображение томографического качества." ["title"]=> string(49) "Многолучевое сканирование" } [886]=> array(3) { ["link"]=> string(7) "ADF.jpg" ["subtitle"]=> NULL ["title"]=> NULL } [889]=> array(3) { ["link"]=> string(8) "DTHI.jpg" ["subtitle"]=> string(717) "(Differential Tissue Harmonic Imaging) Дифференцированная тканевая гармоника - обеспечивает высокую детализацию изображении глубоко расположенных структур. Поскольку в режиме дифференцированной тканевой гармоники за один импульс передаются сигналы на двух различных частотах, изображения обладают непревзойденным пространственным разрешением и контрастностью, а также большей глубиной проникновения." ["title"]=> string(4) "DTHI" } [892]=> array(3) { ["link"]=> string(21) "Precision-Imaging.jpg" ["subtitle"]=> string(378) "Precision Imaging, как и автофокусировка на камере, улучшает определение структур и обостряет границы, чтобы отделить клиническую информацию от беспорядка и шума для более точного представления анатомии пациента." ["title"]=> string(17) "Precision Imaging" } [895]=> array(3) { ["link"]=> string(18) "Panoramic-View.jpg" ["subtitle"]=> string(395) "Мультипланарная реконструкция (Panoramic View) - позволяет просматривать определенные структуры или области в трех ортогональных проекциях, а также в формате поверхностной реконструкции или в виде объемного изображения." ["title"]=> string(14) "Panoramic View" } [898]=> array(3) { ["link"]=> string(10) "3dbaby.jpg" ["subtitle"]=> string(521) "Поверхностная реконструкция - усиливает 3D-эффект полученных объемных данных, представляет поверхность анатомических структур в естественном и простом для понимания виде. Эта методика позволяет превосходно выделить детали и усиливает визуальное впечатление от структур и полостей." ["title"]=> string(53) "Поверхностная реконструкция" } [901]=> array(3) { ["link"]=> string(7) "smi.jpg" ["subtitle"]=> string(251) "SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)" ["title"]=> string(3) "SMI" } }
SMI. SMI – Superb Micro-vascular Imaging (технология визуализации микроциркуляторного русла позволяет отобразить низкоскоростной кровоток в микрососудах)
Наша компания также осуществляет ремонт и сервисное обслуживание оборудования Canon (Toshiba) Aplio 400.
- Для заказа свяжитесь с нашими специалистами по номеру 8-800-511-55-08 или оставьте заявку на info@sonography.ru

УЗИ аппараты Canon (Toshiba)